MEMORY

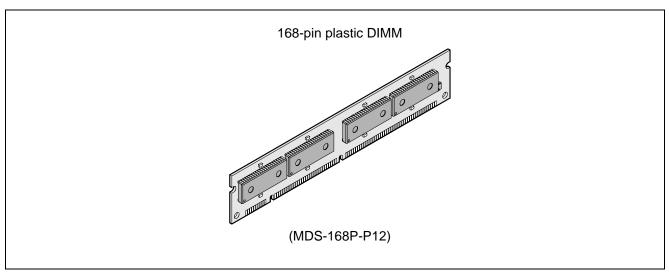
Unbuffered

1 M × 64 BIT HYPER PAGE MODE DRAM DIMM

MB8501E064AD-60/-70

Unbuffered, 1 M \times 64 Bit Hyper Page Mode DIMM, 3.3 V, 1-bank, 4 KR

■ DESCRIPTION


The Fujitsu MB8501E064AD is a fully decoded, CMOS Dynamic Random Access Memory (DRAM) module consisting of four MB81V16165A devices. The MB8501E064AD is optimized for those applications requiring small size package, low power consumption, enhanced performance. The operation and electrical characteristics of the MB8501E064AD are the same as the MB81V16165A which features hyper page mode (EDO) operation. For ease of memory expansion, the MB8501E064AD is offered in an 168-pin Dual In-line Memory Module package (DIMM).

■ PRODUCT LINE & FEATURES

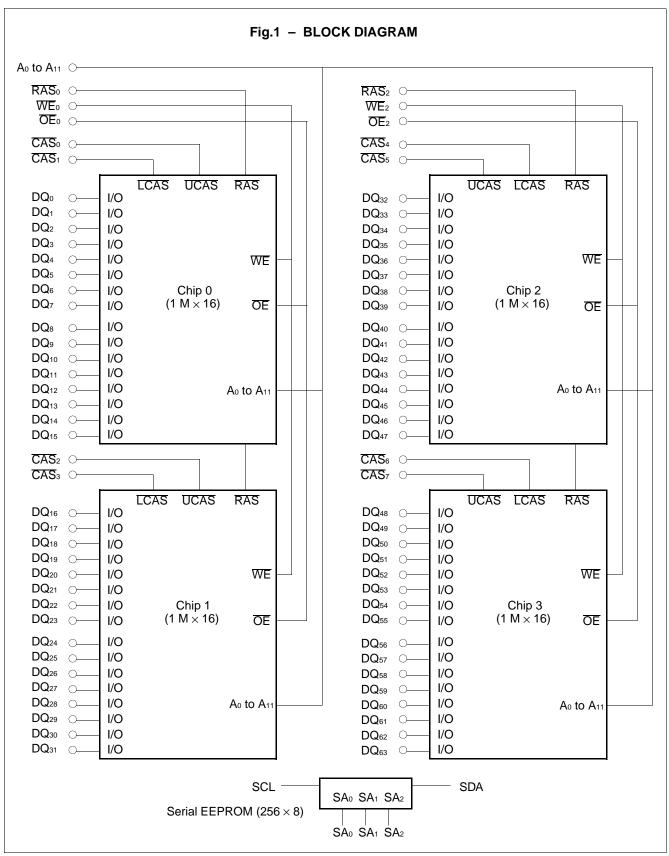
Danam		MB8501E064AD				
Paran	neter	-60	-70			
RAS Access Time		60 ns max.	70 ns max.			
Random Cycle Time		104 ns min.	124 ns min.			
Address Access Time		30 ns max.	35 ns max.			
CAS Access Time		15 ns max.	17 ns max.			
Hyper Page Mode C	ycle Time	25 ns min.	30 ns min.			
Power Dissipation	Operating Mode	1296 mW	1152 mW			
	Standby Mode	28.8 mW	28.8 mW			

- Conformed to 168-pin Unbuffered DIMM JEDEC standard
- Organization : 1,048,576 words × 64 bits
- Module Size: 1.00" (height) × 5.25" (length)
 × 0.20" (thickness)
- Memory Device Mounted: MB81V16165A (1 M × 16, 4 K ref., 3.3 V) 4 pcs
- 3.3 V \pm 0.3 V Supply Voltage
- 4,096 Refresh Cycles / 65.6 ms
- Hyper Page Operation (EDO)
- Serial Presence Detect
- RAS-Only Refresh / CAS-before-RAS Refresh

■ PACKAGE

Package and Ordering Information

- 168-pin DIMM, order as MB8501E064AD-××DG (DG = Gold Pad)


■ PIN ASSIGNMENTS

Pin No.	MB8501E064AD						
1	Vss	43	Vss	85	Vss	127	Vss
2	DQ₀	44	Ō E 2	86	DQ32	128	N.C.
3	DQ ₁	45	RAS ₂	87	DQ33	129	N.C.
4	DQ ₂	46	CAS ₂	88	DQ ₃₄	130	CAS ₆
5	DQ ₃	47	<u>CAS</u> ₃	89	DQ35	131	CAS ₇
6	Vcc	48	WE ₂	90	Vcc	132	N.C.
7	DQ4	49	Vcc	91	DQ36	133	Vcc
8	DQ₅	50	N.C.	92	DQ37	134	N.C.
9	DQ ₆	51	N.C.	93	DQ ₃₈	135	N.C.
10	DQ ₇	52	N.C.	94	DQ39	136	N.C.
11	DQ8	53	N.C.	95	DQ40	137	N.C.
12	Vss	54	Vss	96	Vss	138	Vss
13	DQ ₉	55	DQ16	97	DQ41	139	DQ48
14	DQ ₁₀	56	DQ ₁₇	98	DQ ₄₂	140	DQ ₄₉
15	DQ ₁₁	57	DQ ₁₈	99	DQ ₄₃	141	DQ50
16	DQ ₁₂	58	DQ19	100	DQ44	142	DQ51
17	DQ13	59	Vcc	101	DQ ₄₅	143	Vcc
18	Vcc	60	DQ ₂₀	102	Vcc	144	DQ ₅₂
19	DQ14	61	N.C.	103	DQ46	145	N.C.
20	DQ ₁₅	62	N.C.	104	DQ47	146	N.C.
21	N.C.	63	N.C.	105	N.C.	147	N.C.
22	N.C.	64	Vss	106	N.C.	148	Vss
23	Vss	65	DQ ₂₁	107	Vss	149	DQ53
24	N.C.	66	DQ ₂₂	108	N.C.	150	DQ ₅₄
25	N.C.	67	DQ ₂₃	109	N.C.	151	DQ55
26	Vcc	68	Vss	110	Vcc	152	Vss
27	WE₀	69	DQ ₂₄	111	N.C.	153	DQ ₅₆
28	CAS₀	70	DQ ₂₅	112	CAS ₄	154	DQ ₅₇
29	CAS₁	71	DQ ₂₆	113	CAS₅	155	DQ58
30	RAS₀	72	DQ27	114	N.C.	156	DQ59
31	Ō E ₀	73	Vcc	115	N.C.	157	Vcc
32	Vss	74	DQ ₂₈	116	Vss	158	DQ ₆₀
33	Ao	75	DQ29	117	A ₁	159	DQ ₆₁
34	A ₂	76	DQ30	118	A 3	160	DQ ₆₂
35	A4	77	DQ31	119	A 5	161	DQ ₆₃
36	A 6	78	Vss	120	A ₇	162	Vss
37	A8	79	N.C.	121	A 9	163	N.C.
38	A 10	80	N.C.	122	A ₁₁	164	N.C.
39	N.C.	81	N.C.	123	N.C.	165	SA ₀
40	Vcc	82	SDA	124	Vcc	166	SA ₁
41	Vcc	83	SCL	125	N.C.	167	SA ₂
42	N.C.	84	Vcc	126	N.C.	168	Vcc

■ PIN DESCRIPTIONS

Symbol	Function	Input/Output	Pin Count
A ₀ to A ₁₁	Address Input	Input	12
RAS ₀ and RAS ₂	Row Address Strobe	Input	2
CAS₀ to CAS ₇	Column Address Strobe	Input	8
WE₀ and WE₂	Write Enable	Input	2
OE₀ and OE₂	Output Enable	Input	2
DQ ₀ to DQ ₆₃	Data-input/Data-output	Input/Output	64
SCL	Serial PD Clock	lutput	1
SDA	Serial PD I/O	Input/Output	1
SA ₀ to SA ₂	Serial PD Address Input	Input	3
Vcc	Power Supply	_	17
Vss	Ground	_	18
N.C.	No Connection	_	38

■ BLOCK DIAGRAM

■ SERIAL PRESENCE DETECT (SPD) TABLE

Byte	Function Describ	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0	Number of Bytes Used by Module Manufacturer	14 Bytes	0	0	0	0	1	1	1	0
1	Total SPD Memory Size	256 Bytes	0	0	0	0	1	0	0	0
2	Memory Type	EDO	0	0	0	0	0	0	1	0
3	Number of Row Addresses	12 Addresses	0	0	0	0	1	1	0	0
4	Number of Column Addresses	10 Addresses	0	0	0	0	1	0	1	0
5	Number of Banks	1 Bank	0	0	0	0	0	0	0	1
6	Module Data Width (1)	64 Bits	0	1	0	0	0	0	0	0
7	Module Data Width (2)	+0 Bits	0	0	0	0	0	0	0	0
8	Module Interface Levels	LVTTL	0	0	0	0	0	0	0	1
9	RAS Access Time (trac)	60 ns	0	0	1	1	1	1	0	0
9	INAS Access Time (trac)	70 ns	0	1	0	0	0	1	1	0
10	CAS Access Time (tcac)	15 ns	0	0	0	0	1	1	1	1
10	CAS Access Time (ICAC)	17 ns	0	0	0	1	0	0	0	1
11	Module Configuration Type (Parity or ECC or None)	None	0	0	0	0	0	0	0	0
12	Refresh Rate / Type	Normal	0	0	0	0	0	0	0	0
13	Primary DRAM Width	×16	0	0	0	1	0	0	0	0
14	Error Checking DRAM Data Width	None	0	0	0	0	0	0	0	0
15 to 31	Reserved for Future Offerings	_	_	_	_	_			_	
32 to 63	Superset Information	_	_	_	_	_	_	_	_	_
64 to 127	Manufacturer's Information	_	_	_	_	_	_	_	_	_
128 to 255	Unused Storage Locations		_	_	_	_	_	_	_	

Note: Any write operation must NOT be executed into the addresses of Byte 0 to Byte 127. Some or all data stored into Byte 0 to Byte 127 may be broken.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +4.6	V
Input Voltage	Vin	-0.5 to +4.6	V
Output Voltage	Vouт	-0.5 to +4.6	V
Short Circuit Output Current	Іоит	-50 to +50	mA
Power Dissipation	PD	4	W
Storage Temperature	Тѕтс	-55 to +125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

(Referenced to Vss)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	3.0	3.0	3.6	V
Ground	Vss	_	0	_	V
Input High Voltage, All Inputs	ViH	2.0	_	Vcc + 0.3 V	V
Input Low Voltage, All Inputs*	Vıl	-0.3	_	0.8	V
Ambient Temperature	TA	0	_	70	°C

Note: * Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = +3.3 \text{ V})$

Parame	ter	Symbol	Min.	Max.	Unit
	Ao to A11	C _{IN1}	_	34	pF
	RAS₀ and RAS₂	C _{IN2}	_	18	pF
	CAS₀ to CAS ₇	Сімз	_	12	pF
Input Capacitance	WE₀ and WE₂	C _{IN4}	_	18	pF
	OE₀ and OE₂	C _{IN5}	_	18	pF
	SCL	CIN6	_	7	pF
	SA ₀ to SA ₂	C _{IN7}	_	7	pF
I/O Canacitanas	DQ ₀ to DQ ₆₃	CDQ	_	14	pF
I/O Capacitance	SDA	CSDA	_	7	pF

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Parameter N	Notes		Cumbal	Condition	Va	lue	Unit
Parameter N	otes		Symbol	Condition	Min.	Max.	Unit
Output High Voltage	*1		Vон	Iон = −2 mA	2.4	_	V
Output Low Voltage	*1		Vol	IoL = 2 mA	_	0.4	V
Input Leakage Current		CAS	I _{I(L)}	$\begin{array}{l} 0 \text{ V} \leq \text{Vin} \leq \text{Vcc}, \\ 3.0 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V}, \end{array}$	-10	10	μΑ
input Leakage Current		Others	II(L)	Vss = 0 V, all other pins not under test = 0 V	-30	30	μΑ
Output Leakage Current			IO(L)	$\begin{array}{l} 0 \text{ V} \leq \text{Vout} \leq \text{Vcc}, \\ 3.0 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V} \\ \text{Data out disabled} \end{array}$	-10	10	μΑ
Operating Current (Average Power	*2	MB8501E064AD-60	Icc ₁	RAS & CAS cycling,	_	360	- mA
Supply Current)		MB8501E064AD-70	ICCT	trc = min	_	320	
Standby Current (Power Supply	*2	TTL Level	Icc2	RAS = CAS = VIH	_	8	mA
Current)	2	CMOS Level	1002	RAS = CAS ≥ Vcc −0.2 V	_	4	
Refresh Current #1 (Average Power	*2	MB8501E064AD-60	Icc3	CAS = V _H , RAS = cycling,	_	360	mA
Supply Current)	2	MB8501E064AD-70	1003	trc = min	_	320	
Hyper Page Mode	*2	MB8501E064AD-60	Icc4	RAS = V _I L, CAS = cycling,	_	360	- mA
Current	2	MB8501E064AD-70	ICC4	thec = min	_	320	
Refresh Current #2	MB8501E064AD-		los-	RAS cycling, CAS-before-RAS,	_	360	A
(Average Power Supply Current)		MB8501E064AD-70		trc = min	_	320	mA

Notes: *1. Referenced to Vss.

Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$ and $V_{IL} > -0.3 \text{ V}$. Icc1, Icc3, Icc4 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc2 is specified during $\overline{RAS} = V_{IH}$ and $V_{IL} > -0.3 \text{ V}$.

^{*2.} Icc depends on the output load conditions and cycle rate. The specific values are obtained with the output open.

■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 1, 2, 3

NI.	Devenuetor	Notes	Cumah al	MB8501E	064AD-60	MB8501E	064AD-70	l lm !4
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh		t REF	_	65.6	_	65.6	ms
2	Random Read/Write Cycle Time		t RC	104	_	124	_	ns
3	Read-Modify-Write Cycle Time		trwc	138	_	162	_	ns
4	Access Time from RAS	*4,7	t rac	_	60	_	70	ns
5	Access Time from CAS	*5,7	t cac	_	15	_	17	ns
6	Column Address Access Time	*6,7	t AA	_	30	_	35	ns
7	Output Hold Time		tон	3	_	3	_	ns
8	Output Hold Time from CAS		tонс	5	_	5	_	ns
9	Output Buffer Turn On Delay Time		ton	0	_	0	_	ns
10	Output Buffer Turn Off Delay Time	*8	t off	_	15	_	17	ns
11	Output Buffer Turn Off Delay Time from RAS	*8	t ofr	_	15	_	17	ns
12	Output Buffer Turn Off Delay Time from WE	*8	twez	_	15	_	17	ns
13	Transition Time		t ⊤	1	50	1	50	ns
14	RAS Precharge Time		t RP	40	_	50	_	ns
15	RAS Pulse Width		t ras	60	100000	70	100000	ns
16	RAS Hold Time		t RSH	15	_	17	_	ns
17	CAS to RAS Precharge Time		t CRP	5	_	5	_	ns
18	RAS to CAS Delay Time	*9,10	trcd	14	45	14	53	ns
19	CAS Pulse Width		t cas	10	_	13	_	ns
20	CAS Hold Time		t csH	40	_	50	_	ns
21	CAS Precharge Time (Normal)	*17	t CPN	10	_	10	_	ns
22	Row Address Setup Time		t asr	0	_	0	_	ns
23	Row Address Hold Time		t rah	10	_	10	_	ns
24	Column Address Setup Time		tasc	0	_	0	_	ns
25	Column Address Hold Time		t CAH	10	_	10	_	ns
26	Column Address Hold Time from RAS		tar	24	_	24	_	ns
27	RAS to Column Address Delay Time	*11	t RAD	12	30	12	35	ns
28	Column Address to RAS Lead Time		tral	30	_	35	_	ns
29	Column Address to CAS Lead Time		t CAL	23	_	28	_	ns
30	Read Command Setup Time		trcs	0	_	0	_	ns
31	Read Command Hold Time Referenced to RAS	*12	t rrh	0	_	0	_	ns

(Continued)

	D	NI - 4	0	MB8501E	064AD-60	MB8501E	064AD-70	11
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
32	Read Command Hold Time Referenced to CAS	*12	t rch	0	_	0	_	ns
33	Write Command Setup Time	*13,18	twcs	0	_	0	_	ns
34	Write Command Hold Time		twcн	10	_	10	_	ns
35	Write Command Hold Time from RAS		twcr	24	_	24	_	ns
36	WE Pulse Width		t wp	10	_	10	_	ns
37	Write Command to RAS Lead Time		t RWL	15	_	17	_	ns
38	Write Command to CAS Lead Time		tcwL	10	_	13	_	ns
39	DIN Setup Time		tos	0	_	0	_	ns
40	DIN Hold Time		t DH	10	_	10	_	ns
41	Data Hold Time from RAS		t DHR	24	_	24	_	ns
42	RAS to WE Delay Time	*18	trwd	77	_	89	_	ns
43	CAS to WE Delay Time	*18	tcwd	32	_	36	_	ns
44	Column Address to WE Delay Time	*18	t awd	47	_	54	_	ns
45	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t RPC	5	_	5	_	ns
46	CAS Setup Time (C-B-R Refresh)		tcsr	0	_	0	_	ns
47	CAS Hold Time (C-B-R Refresh)		t CHR	10	_	12	_	ns
48	Access Time from OE	*7	t oea	_	15	_	17	ns
49	Output Buffer Turn Off Delay from OE	*8	toez	_	15	_	17	ns
50	OE to RAS Lead Time for Valid Data		t oel	10	_	10	_	ns
51	OE to CAS Lead Time		t col	5	_	5	_	ns
52	OE Hold Time Referenced to WE	*14	t oeh	5	_	5	_	ns
53	OE to Data in Delay Time		toed	15	_	17	_	ns
54	RAS to Data in Delay Time		t RDD	15	_	17	_	ns
55	CAS to Data in Delay Time		tcdd	15	_	17	_	ns
56	DIN to CAS Delay Time	*15	t DZC	0	_	0	_	ns
57	DIN to OE Delay Time	*15	t DZO	0	_	0	_	ns
58	OE Precharge Time		t OEP	8	_	8	_	ns
59	OE Hold Time Referenced to CAS		toech	10	_	10	_	ns
60	WE Precharge Time		t wpz	8	_	8	_	ns
61	WE to Data in Delay Time		twed	15	_	17	_	ns
62	Hyper Page Mode RAS Pulse Width		t RASP	_	100000	_	100000	ns

(Continued)

(Continued)

No.	Parameter Notes	Symbol	MB8501E	064AD-60	MB8501E	Unit	
NO.	raiametei Notes	Syllibol	Min.	Max.	Min.	Max.	Ollit
63	Hyper Page Mode Read/Write Cycle Time	t HPC	25	_	30	_	ns
64	Hyper Page Mode Read-Modify-Write Cycle Time	thprwc	69	_	79	_	ns
65	Access Time from CAS Precharge *7,16	t CPA	_	35	_	40	ns
66	Hyper Page Mode CAS Precharge Time	tcp	10	_	10	_	ns
67	Hyper Page Mode RAS Hold Time from CAS Precharge	t RHCP	35	_	40	_	ns
68	Hyper Page Mode CAS Precharge *18 to WE Delay Time	tcpwd	52	_	59	_	ns

- Notes: *1. An initial pause (RAS = CAS = V_{IH}) of 200 μs is required after power-up followed by any eight RAS-only cycles or eight CAS-before-RAS refresh cycles (WE = V_{IH}) before proper device operation is achieved. If an internal refresh counter is used, a minimum of eight CAS-before-RAS initialization cycles are required instead of eight RAS cycles.
 - *2. AC characteristics assume $t_T = 2$ ns.
 - *3. V_I (min) and V_I (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_I (min) and V_I (max).
 - *4. Assumes that tRCD ≤ tRCD (max), tRAD ≤ tRAD (max). If tRCD and/or tRAD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD and/or tRAD exceeds the value shown.
 - *5. If trcd ≥ trcd (max), trad ≥ trad (max), and tasc ≥ trad tcac tt, access time is tcac.
 - *6. If trad \geq trad (max) and tasc \leq taa tcac tt, access time is taa.
 - *7. Measured with a load equivalent to one TTL loads and 100 pF.
 - *8. toff, toez, toff and twez are specified that output buffer change to high-impedance state.
 - *9. Operation within the trad (max) limit ensures that trad (max) can be met. trad (max) is specified as a reference point only; if trad is greater than the specified trad (max) limit, access time is controlled exclusively by trad or trad.
 - *10. t_{RCD} (min) = t_{RAH} (min) + $2t_{T}$ + t_{ASC} (min).
 - *11. Operation within the trad (max) limit ensures that trac (max) can be met. trad (max) is specified as a reference point only; if trad is greater than the specified trad (max) limit, access time is controlled exclusively by trac or trad.
 - *12. Either trrh or trch must be satisfied for a read cycle.
 - *13. twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
 - *14. Assumes that twcs < twcs (min).
 - *15. Either tozc or tozo must be satisfied.
 - *16. tcpa is access time from the selection of a new column address (caused by changing CAS from "L" to "H"). Therefore, if tcp becomes long, tcpa also becomes longer than tcpa (max).
 - *17. Assumes CAS-before-RAS refresh cycle.
 - *18. twcs, tcwd, trwd, tawd, and tcpwd are not restrictive operating parameters. They are included in the data sheet as an electrical characteristic only. If twcs ≥ twcs (min), the cycle is an early write cycle and Dout pin will maintain high-impedance state thoughout the entire cycle. If tcwd ≥ tcwd (min), trwd ≥ trwd (min), tawd ≥ tcwd (min), and tcpwd ≥ tcpwd (min), the cycle is a read-modify-write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be executed by satisfying trwL, tcwL, tral and tcaL specifications.

*Source: See MB81V16165A Data Sheet for details on the electricals.

■ SERIAL PRESENCE DETECT (SPD) FUNCTION

1. PIN DESCRIPTIONS

SCL (Serial Clock)

SCL input is used to clock all data input/output of SPD.

SDA (Serial Data)

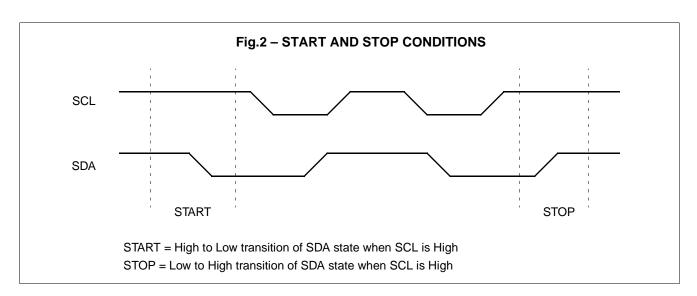
SDA is a common pin used for all data input/output of SPD. The SDA pull-up resistor is required due to the open-drain output.

SA₀, SA₁, SA₂ (Address)

Address inputs are used to set the least significant three bits of the eight bits slave address. The address inputs must be fixed to select a particular module and the fixed address of each module must be different each other.

2. SPD OPERATIONS

CLOCK and DATA CONVENTION


Data states on the SDA can change only during SCL=Low. SDA state changes during SCL=High are indicated start and stop conditions. Refer to Fig.2 below.

START CONDITION

All commands are preceded by a start condition, which is a transition of SDA state from High to Low when SCL=High. SPD will not respond to any command until this condition has been met.

STOP CONDITION

All read or write operation must be terminated by a stop condition, which is a transition of SDA state from Low to High when SCL=High. The stop condition is also used to make the SPD into the state of standby power mode after a read sequence.

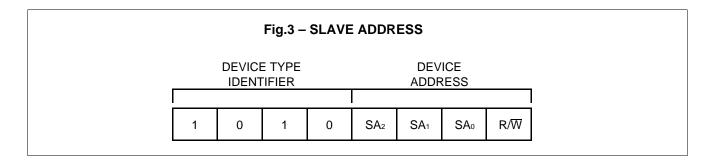
ACKNOWLEDGE

Acknowledge is a software convention used to indicate successful data transfer. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle the receiver will put the SDA line to Low in order to acknowledge that it received the eight bits of data.

The SPD will respond with an acknowledge when it received the start condition followed by slave address issued by master.

In the read operation, the SPD will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is issued by master, the SPD will continue to transmit data. If an acknowledge is not detected, the SPD will terminated further data transmissions. The master must then issue a stop condition to return the SPD to the standby power mode.

In the write operation, upon receipt of eight bits of data the SPD will respond with an acknowledge, and await the next eight bits of data, again responding with an acknowledge until the stop condition is issued by master.


SLAVE ADDRESS ADDRESSING

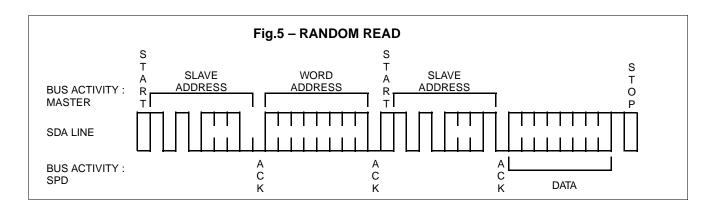
Following a start condition, the master must output the eight bits slave address. The most significant four bits of the slave address are device type identifier. For the SPD this is fixed as 1010[B]. Refer to the Fig.3 below.

The next three significant bits are used to select a particular device. A system could have up to eight SPD devices –namely up to eight modules– on the bus. The eight addresses for eight SPD devices are defined by the state of the SA₀, SA₁ and SA₂ inputs.

The last bit of the slave address defines the operation to be performed. When R/W bit is "1", a read operation is selected, when R/W bit is "0", a write operation is selected.

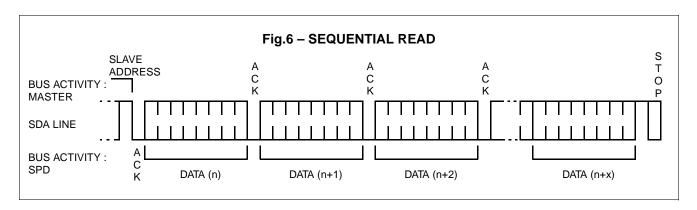
Following the start condition, the SPD monitors the SDA line comparing the slave address being transmitted with its slave address (device type and state of SA₀, SA₁, and SA₂ inputs). Upon a correct compare the SPD outputs an acknowledge on the SDA line. Depending on the state of the R/W bit, the SPD will execute a read or write operation.

3. READ OPERATIONS


CURRENT ADDRESS READ

Internally the SPD contains an address counter that maintains the address of the last data accessed, incremented by one. Therefore, if the last access (either a read or write operation) was to address(n), the next read operation would access data from address(n+1). Upon receipt of the slave address with the R/ \overline{W} bit = "1", the SPD issues an acknowledge and transmits the eight bits of data during the next eight clock cycles. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig.4 for the sequence of address, acknowledge and data transfer.

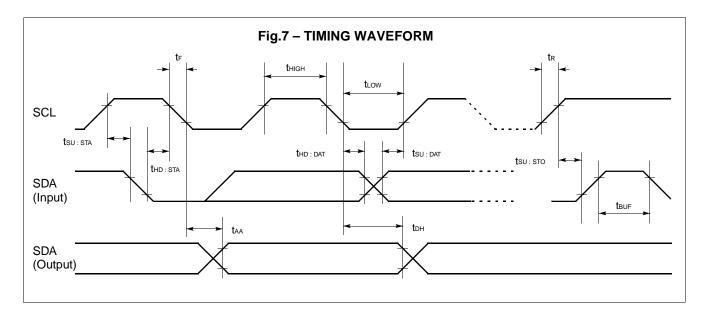
RANDOM READ


Random Read operations allow the master to access any memory location in a random manner. Prior to issuing the slave address with the R/ \overline{W} bit = "1", the master must first perform a "dummy" write operation on the SPD. The master issues the start condition, and the slave address followed by the word address. After the word address acknowledge, the master immediately reissues the start condition and the slave address with the R/ \overline{W} bit = "1". This will be followed by an acknowledge from the SPD and then by the eight bits of data. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig.5 for the sequence of address, acknowledge and data transfer.

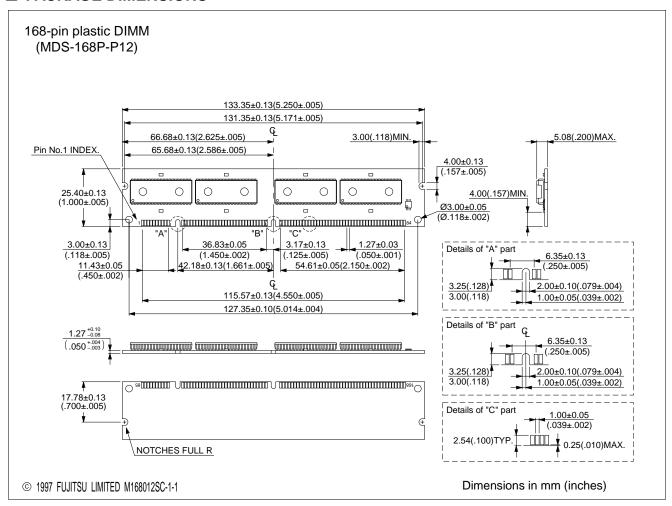
SEQUENTIAL READ

Sequential Read can be initiated as either a current address read or random read. The first data are transmitted as with the other read mode, however, the master now responds with an acknowledge, indicating it requires additional data. The SPD continues to output data for each acknowledge received. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig.6 for the sequence of address, acknowledge and data transfer.

The data output is sequential, with the data from address(n) followed by the data from address(n+1). The address counter for read operations increments all address bits, allowing the entire memory contents to be serially read during one operation. At the end of the address space (address 255), the counter "rolls over" to address 0 and the SPD continues to output data for each acknowledge received.


4. DC CHARACTERISTICS

Parameter	Note	Test Condition	Symbol	Min.	Max.	Unit
Input Leakage Current		$0 \text{ V} \leq V_{IN} \leq V_{CC}$	Sili	-10	10	μΑ
Output Leakage Current		0 V ≤ V _{OUT} ≤ V _{CC}	Silo	-10	10	μΑ
Output Low Voltage	*1	IoL = 3.0 mA	Svol	_	0.4	V


Note: *1 Referenced to Vss.

5. AC CHARACTERISTICS

No.	Parameter	Symbol	Min.	Max.	Unit
1	SCL Clock Frequency	fscL	0	100	kHz
2	Noise Suppression Time Constant at SCL, SDA Inputs	Tı	_	100	ns
3	SCL Low to SDA Data Out Valid	t AA	0.3	3.5	μs
4	Time the Bus Must Be Free before a New Transmission Can Start	t BUF	4.7	_	μs
5	Start Condition Hold Time	thd:STA	4.0	_	μs
6	Clock Low Period	tLOW	4.7	_	μs
7	Clock High Period	t HIGH	4.0	_	μs
8	Start Condition Setup Time	tsu:sta	4.7	_	μs
9	Data In Hold Time	thd:dat	0	_	μs
10	Data In Setup Time	tsu:dat	250	_	ns
11	SDA and SCL Rise Time	t R	_	1	μs
12	SDA and SCL Fall Time	t⊧	_	300	ns
13	Stop Condition Setup Time	tsu:sto	4.7	_	μs
14	Data Out Hold Time	tон	100	_	ns
15	Write Cycle Time	twr	_	15	ms

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9803

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.